生物测定传感器和读出器通常被整合到大宗电子产品中,诸如个人电脑、笔记本电脑、DVD、手机、USB存储器以及硬盘等,用来防止在此类物品被盗或丢失后其中的文件被用户读取。其它重要的应用有公共行政管理、移动交易(如电子商务或邮递商务)以及机场和在医院中控制患者的病历等。
以生物测定监视系统为基础的传感器技术发展十分迅速,并且在图象显示、反应速度和数据处理等方面提供了非常优越的性能。指纹传感器在分辨率、有效面积的获取、可靠性、坚固程度、体积、价格及保养需求等方面有着很大区别。NIST(美国国家标准技术研究所)标准规定一个“好”的指纹图像的分辨率应该高于500dpi(dot per inch)。当今应用普遍的技术是光学法,使用一个传感器或一组CCD(电荷耦合装置)或CMOS(互补金属氧化物半导体)传感器;还有使用电容法的。电容扫描器是更为精简的装置,因此它们是容量有限的便携式仪器的理想选择。新一代用于获取指纹的传感器不需要手指与仪器有实质性的接触,这样就避免了由前一次获取指纹残留下来的指印所带来的干扰问题,这种残留指印会改变指纹读取结果。Upek,一个2004年由STMicroelectronics 派生出的公司,研制出了一种叫作TouchChip的活性像素电容感应技术,它提供了佳的信号与噪声比率以及成像质量。与以往的电容感应技术相比,它也确保了图像不受寄生元件的干扰(parasite effects)。其感应区域由一个二维像素组构成,每一维由两个相邻的金属电极组成,由一个保护罩将它们与用户的手指和周围环境分开。那些电极形成了一个散射状的电容,它的电场力线被铺在硅表面上。当手指的皮肤处在传感器的感应区内时,它干扰了其电场的电场力线,因而降低了两个电极之间的有效电容量,通过电容减弱的程度就可以探测到皮肤表面高低起伏的变化。
虽然目前生物测定传感器的单位价格已经低于五美元,但是为了进一步降低它们的价格,奥地利的Nanoident公司研制出了由聚合物半导体制成的光学传感器,它的价格比其同类的硅半导体传感器要低廉得多。使用这种传感器能制出柔软易曲的指纹扫描器并能将其嵌入到智能卡中。每个传感器带有256个50μ×50μ的像素,所产生图像的分辨率为250dpi。
手掌静脉纹识别虽然是一项不太常用的生物测定技术,但它也在逐渐流行起来。它通常与指纹识别共同使用来实现更别的保安措施。其应用包括人员识别、人员进入的控制以及对使用电子收款机进行的金融交易实施保护等。Fujitsu公司研发了一种使用近红外光来确定静脉形状的技术。原理是在静脉中流动的血红蛋白吸收波长为760nm的近红外光,因此这项非接触性的技术是很可靠而安全的。静脉构造图是非常难以和伪造的,原因是它在手的组织内部并且需要血液流动才能够构成图像。由Fujitsu研发的这项技术使错误接受率低于0.00008%,而错误拒率则低于0.01%。
关于生物传感器:
生物传感器(biosensor)对生物物质敏感并将其浓度转换为电信号进行检测的仪器。是由固定化的生物敏感材料作识别元件(包括酶、、抗原、微生物、细胞、组织、核酸等生物活性物质)与适当的理化换能器(如氧电极、光敏管、场效应管、压电晶体等等)及信号放大装置构成的分析工具或系统。生物传感器具有接受器与转换器的功能。
生物传感器的原理:
待测物质经扩散作用进入生物活性材料,经分子识别,发生生物学反应,产生的信息继而被相应的物理或化学换能器转变成可定量和可处理的电信号,再经二次仪表放大并输出,便可知道待测物浓度。
生物传感器的特点:
(1)采用固定化生物活性物质作催化剂,价值昂贵的试剂可以重复多次使用,克服了过去酶法分析试剂费用高和化学分析繁琐复杂的缺点。
(2)专一性强,只对特定的底物起反应,而且不受颜色、浊度的影响。
(3)分析速度快,可以在一分钟得到结果。
(4)准确度高,一般相对误差可以达到1%
(5)操作系统比较简单 ,容易实现自动分析
(6)成本低,在连续使用时,每例测定仅需要几分钱人民币。
(7)有的生物传感器能够可靠地指示微生物培养系统内的供氧状况和副产物的产生。在产控制中能得到许多复杂的物理化学传感器综合作用才能获得的信息。同时它们还指明了增加产物得率的方向。